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Abstract—Factor analysis is a powerful tool used for the anal- analysis is that FADS extracts physiological TACs. More pre-
ysis of dynamic studies. One of the major drawbacks of factor anal- cisely, the obtained curves are interpreted as TACs of a given
ysis of dynamic structures (FADS) is that the solution is not math- physiological region and the corresponding factor coefficients
ematically unique when only nonnegativity constraints are used to ' . . .
determine factors and factor coefficients.In this paper, a method define the geometry of that region. In the mixture analy5|s_
to correct for ambiguous FADS solutions has been developed. A method, the set of generated sub-TACs does not necessarily
nonambiguous solution (to within certain scaling factors) is ob- correspond to the underlying physiology. That being the case
tained by constructing and minimizing a new objective function. the set is used for a better representation than the pixel wise
The most common objective function consists of a least squares representation of the dynamic data [3]. We will concentrate on

term that when minimized with nonnegativity constraints, forces - . o .
agreement between the applied factor model and the measured the FADS methods in this paper. Specifically, we will address

data. In our method, this objective function is modified by adding the problem of nonuniqueness of the solution, which is the
a term that penalizes multiple components in the images of the major drawback of FADS.

factor coefficients. Due to nonuniqueness effects, these factor co-  |n the factor model of dynamic data, itis assumed that activity
efficients consist of more than one physiological component. The ;, each pixel is a linear combination of factdfswith the co-

technigue was tested on computer simulations, an experimental ca- .. . . L . . .
nine cardiac study using®®™ Tc-teboroxime, and a patient planar efficients of the linear combination defined in matftx Using

99mTc-MAG 5 renal study. The results show that the technique this assumption, the dynamic daacan be written as
works well in comparison to the truth in computer simulations
2&%itgsreglon of interest (ROI) measurements in the experimental A=CF+e¢ (1)

Index Terms—bynamic SPECT, factor analysis, penalized least

with e being an error irA.. The size ofA is N x M, whereN
squares.

is the number of pixels in the image afid is the number of
dynamic images. The matrix of factolsis P x A and the
I. INTRODUCTION matrix of the factor coefficient€C is N x P, with P being

ACTOR analysis of dynamic structures (FADS) mthe number of factors. Put simply, it is assumed that the image

»

[2], which uses a factor model of the dynamic data i built from structures that have the same temporal behaviors.

a semi-automatic technique used for the extraction of timd cardiac imaging, such structures are the myocardium, blood

activity curves (TACs) from a series of dynamic images. Th%ools, and liver. In renal imaging, such structures are the kidney

mixture analysignethod [3]-[5] is another application of theco_rl_tﬁx’ LTDt)Sackgrﬁugd, andbthe ur%ter. biai ind
factor model to dynamic data. In this method, pixel-wise TACs € method can be used to obtain op_erator_ inde-
are approximated by using a linear combination of underlyi ndent results that have advantages over region-of-interest

sub-TACs. The main difference between FADS and mixtu OI).measurements, which are o.btained whe_n an operator
specifies ROIs that correspond to different physiological areas

in the image. TACs obtained from ROl measurements may be

. . . , cgmposites of activities from different overlapping components
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To explain nonuniqueness of the factor model lets consider a Il. METHODS
data set with two factors. Using (1) the data are= C, F; + A. PLS-FADS
CyFy whereC; andC, are the factor coefficients for factofg '
and F>, respectively. The above equation can be rearranged tol he LS objectivefs, is a Cartesian norm between the mea-
A = (Cy + aCy)Fy 4+ Cy(F, — aF}) with a being some con- sured the data and the factor model described by
stant. If only nonnegativity constraints are used then the factor

coefficientsC; + aC> andC, and factorgF; andF, — oF) de- o N M ro 2
scribe the same data sétas do the factor coefficients; and fLs (C, F) = Z Z( CipFp — Ait> (2)
C5 and factorsF; andF; as long as”; + aCs andFs — ol i=1 t=1 \ p=1

are nonnegative.

~ As seen in the above example, it is easy to construct an adghere £, is the estimate of theth factor andt is an index
tional set of factor coefficients and factors from the existing sgh, time. C;p is theith pixel of the estimate of theth factor

as long as conditionS) +aCy > 0 andF; —afy > Oare satis- coefficient imageA;, represents the value of the measurement
fied. This simple example illustrates the nonuniqueness problegpy 4 (dynamic sequence) at thb pixel in thetth time frame.

for two factors, but similar nonunigqueness considerations appy¢r and ¥ are to be physiologically meaningful they must be
to a model with more factors. The severity of the nonuniquener'%énnegaﬂve_ To impose the nonnegativity of estimétesdF

artifacts depends on the TACs of the physiological componenfge | 5 objective is modified by the termeg(é, ﬁ‘)’ defined as
the nonuniqueness effects can be very serious in one study and

nearly nonexistent in another. For a detailed mathematical anal- NP P
ysis and more discussion on these effects, see [7]. Nonunique- S N A ’ P
ness is a very serious drawback to the FADS method. Foes (C’ F) o Zl H(C”’) + Z H(Fpt) (3)
To correct for nonuniqueness, additioagiriori information
about the data being analyzed can be used [7]-[12]. InformV{;I\.r-1
tion about the spatial distribution of the factor coefficients can
be used aa prior information. For example, the user may be re- H(z)
quired to specify a region in the image (such as pure background
or pure blood) where only one component is present, methods .
that usea priori information cannot be used generically, they ar®ith a being a penalty constant. By minimizinfys(C, F) +
designed to work only for specific kinds of dynamic studies. Anfnes(C, F'), results similar to standard FADS with oblique ro-
other way to correct for nonuniqueness is to use the maximd@iion and nonnegativity constraints are obtained [7]. The LS
entropy princip|e [13], []_4]_ A different approach to Correcting'nethOd with nonnegativity constraints will be referred to as the
ambiguous solutions was considered in [7], wherein a postpteS-FADS method. Nonnegativity alone though is not enough
cessing technique was applied to the solution of the nonunidi@eguarantee that each factor coefficient image corresponds to
FADS. However, this approach also usesriori information a single physiological region; by physiological region we mean
about the spatial distribution of factors in cardiac imaging. Thtbe region in the image that has the same temporal behavior. For
technique was applied to Tc-99m-teboroxime cardiac imagirgxample, in cardiac imaging such physiological regions are the
Another example of correcting for nonuniqueness can be fouledt ventricular (LV) blood pool, right ventricular (RV) blood
in mixture analysis in which unitary constraints [5] have begpool, liver, and myocardial tissue (if there is no abnormal up-
used to improve the estimation of the background componetatke in the heart muscle due to infarctions).
thereby enabling us to resolve other components. Images of the factor coefficients obtained using FADS should
In this paper, we developed a factor analysis method thatrrespond to the images of different physiological regions. Ide-
does not require orthogonal analysis. The method does not allg, it is expected that in each factor coefficient image only
anya priori information and is not restricted to a specific typ@ne physiological region will be present. However, due to the
of imaging. It can be applied to any medical dynamic sequengenuniqueness effect, each of the obtained images can be a
of images. The technique involves using the penalized ledisear combination of physiological regions in the image. In
squares (PLS) objective function to uniquely (to wittiirscale other words, each coefficient image acquired using nonunique
factors) and accurately extract factors and factor coefficientsFADS may be a mixture of multiple true physiological compo-
There are three terms in the objective function. One termngnts (for more details and derivation see [7]). In order to reduce
the least squares (LS) term, which forces agreement betweenttgeamount of mixing, we add to the objective function a term

acquired data and the applied factor model. The second tetat is a dot product of the normalized coefficients
imposes the nonnegativity constraints on the factors and the

i, p= t,p=1

ere

{aa:Q z <0 (4)

0 x>0

images of factor coefficients as they are being acquired. The P P N & &

third term makes the result of the minimization of the objec- f,..,(C) = bz Z Z ‘ . 4 (5)
tive function unique by minimizing the products between the =1 g=pt1 im1 N o N o

factor coefficientimages. The rationale behind the choice of the Z C]?p Z qu

third term will be given in Section Il. The method was tested J=1 j=1

on computer simulations. It was also used to analyze a canine
99mTc-teboroxime cardiac study and a pati€ft'Tc-MAG; A total objective functionfprs = fus + fneg + funi Will
renal study. be called a penalized LS objective function. Minimization of
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(5) will reduce the amount of overlap between different coeffif,..; ) was equal to 0.1. The value @fvas was set to some large
cient images and therefore will minimize the amount of mixingalue. Its value was not critical when the algorithm was used to
between the different components. It is importantfip; that estimate physical (no negative values) solutions.

the values of the image coefficients be normalized in such aAfter the optimization, the results and matric€sand F
way that the scaling o€ does not affect the value g¢f,,,;. In were re-scaled. That is, the coefficieifswere scaled so that
(5), the values are normalized Zj\;l Ofp in the denomi- all values of the coefficients were in the range from zero to

nator. Without this normalizationf,,,; could be scaled to zero "€ This scaling was done separately for each colum@ in
by scalingC to zero. Such scaling of is allowed in the factor PY finding the approximate maximum value of each column

model since there is a multiplicative relation betwégandF. DY averaging the ten pixels with the highest coefficients, then
Therefore, by scaliné: by a constant, the matrixF is scaled d|V|d_|ng all coefficients of a given column by this maximum.
by 1/z and the model expressed by (1) holds. This scaling cf@Pviously, the corresponding rows In need to be scaled by
ates additional degrees of freedom which are not constrainedB§ reciprocal of this maximum in order for (1) to hold.
the objective function.

The coefficient images that result from the minimization o€. Computer Simulations
frLs should have simple structures that correspond to singIeA simple dynamic sequence was created from the three

physiological regions. The lower value §fy, compared with I?bjects presented in Fig. 1 (first row). The intensities of each

fLs + fuee, Was chosen so that the nonnegativity of the resulfs - : .
im osed% as well as aareement with the data aranteggjed were changed according to the curves presented in
Imp Yneg, 8S W 9 Wi gu ig. 1(A)—(C). A total of 90, 64x 64 pixel images were

by fLs, are not compromised by the addition of thg; term to enerated. Noise was not added to the images
the objective function. The constdnis applied in (5) to adjust g L . . ges.
f“‘ more realistic computer simulation was also performed. A

the strength of the nonuniqueness penalty. The optimal value Lo of the MCAT phantom [16] was used for this simulation
b was investigated in computer simulations for different levePF’hree components in the image were simulated: The RV bloéd

of noise. pool, the LV blood pool, and the myocardial tissue (TI). The
) S presence of vascular activity in the myocardial tissue was simu-
B. Numerical Optimization lated by adding 10% of LV activity to the tissue. The simulated

First, a number of factord® had to be chosen before thecurves are presented as truth in Fig. 2(A)—(C), for the RV, LV,
minimization was performed. We used an orthogonal singui@pd tissue, respectively. A previously developed model, and its
value decomposition of the dynamic data to examine mag,ﬁqarameters, were used to create the simulated curves [7]. Partial
tudes of the singular values. Then based on the number of s{alume effects were simulated by smoothing the images of the
gular values, which were well above the noise level, we choM{CAT phantom components so that the neighboring structures
the appropriate number of components (see also [14]). partially overlap by two to three pixels.

We found from our experience that the algorithm is not sen- A dynamic sequence of 180, 2020 pixel images was cre-
sitive to the selection of a starting point. For all optimizatioRted and analyzed by LS FADS. Dynamic sequences with nor-
results included in this paper, the same starting point was usBilly distributed noise (variances equal to 15%, 25%, and 35%
We initialized all images of factor coefficients with a value off the value of the mean) were generated from a noise-free se-
one. Since optimization was done by a gradient method, afgence. The selection of normally distributed noise for the sim-
the values ofC were initialized by a constant, the factors hadilation was based on the fact that the distribution of noise in re-
to be initialized with linearly independent functions. Therefor&onstructed images is unknown, and we assumed that normally
to avoid stalling the optimization, any row &f could not be distributed noise gives a reasonable approximation. For each
a linear combination of the other rows. Also the valuediof computer simulation with noise, 100 noise realizations were
were chosen such that the resulting initial values of the matt#eed.

A = CT had approximately the same order of magnitude asThe accuracy of the curve est_imates was measured using a
the values in the matriA of the dynamic data being analyzedMeasureD), which was the total distance from the true LV and

After the initialization, a conjugate gradient method [15] waBY curves to the estimates of the LV and RV curves obtained
used for the minimization. In each iteration, a gradient of the o§Sing the LS FADS method. This measure was defined as

jective functiony fpLs = (0fpLs/OC, 8fpLs/OF) was calcu-

lated analytically using Egs. (2), (3), and (5). Then the function M ‘Fpt — Fpt

was minimized in the conjugate direction of the gradient using D= Z Z M 6
the Brent method [15]. The iterations were terminated when the p=LV, RV =1 Z Z Fyy

relative change in the objective function in one iteration was p=LV,RV t/=1

less than 10%. Depending on the size of the study, 40-150 it-

erations were required. In terms of speed, the algorithm towkereF is the true factor an# is an estimate of that factor ob-

approximately 20 s to converge on the SUN Ultra 1 system ftained via the LS FADS method. The measiirgvas calculated

the two-dimensional (2-D) data sets. over the LV and RV only. The tissue component was not taken
The method which we used for selectibgvas to adjust the into account during the calculation of the meashrédecause

value of the penalty parameter after every few iterations of tltee error calculated byp of the tissue curve occurs mainly as a

conjugate gradient algorithm so that the ratiofgf;/(frLs + result of the ambiguity over how much simulated vasculature in
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Fig. 1. Results of computer simulations. The top row of images correspor"::'r:| e
to the circular objects which were used in the computer simulations. The sect : .M"
row present the factor coefficient images [these images correspond to colur ) i e " o B T
in the matrixC in (1)] obtained by the LS-FADS method. The last row present |
the factor coefficients images obtained by the PLS-FADS method. The plc
present a comparison of factors [rows in malfixn (1) obtained with different 1
factor analysis methods to the true curves. Symbols correspond to every 2

frame. Plots (A), (B), and (C) correspond to objects presented in columns ( o F

&

‘ 1] {1
(b), and (c), respectively. Timefsecomdil]

. . . . ] _Fig. 2. Images of factor coefficients used in computer simulations (MCAT
the tissue is present in the tissue curve obtained by nonunigtentom). (a) RV, (b) LV, and (c) tissue. In the second and the third rows,

LS-FADS. Since this ambiguity is not directly connected tnages of factors coefficients obtained by LS-FADS and PLS-FADS methods
presented. Plots (A), (B), and (C) present the factors obtained by the

the nonuniqueness effects, when (_:onS|der|ng the LV and FI%@FADS and PLS-FADS methods with comparison to the true simulated

components alone, we only take into account the effects @fves forthe RV, LV, and tissue, respectively. The same gray scale representing

nonuniqueness of the factor model. values from zero to one is used for each image. The presented results are for
one realization of 25% noise. For the LS-FADS method the penalty parameter

was equal to zero, and for the PLS-FADS metHodgualed to 2x 10°. Only

D. Experimenta| Studies the first 400 s out of a total 1080 s of the curves are presented.

Data from &’?™Tc-teboroxime canine study were analyzedCleveland, OH) was used to acquire transmission and emission
A three-detector IRIX scanner (Marconi Imaging Systems, Ing@rojection data. The camera acquired 120 projections every 6
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s for approximately 18 min. The 179 dynamic images were réactors obtained using the LS-FADS method are presented in
constructed using 25 iterations of the maximum-likelihood eXig. 1(A)—(C). They all show substantial disagreement with the
pectation-maximization algorithm with attenuation correctiosimulated factors. The third row of images in Fig. 1 correspond
The reconstructed three-dimensional (3-D) images were thenimages of factor coefficients obtained using the PLS-FADS
reoriented to obtain short-axis slices of the heart. Factor analethod. Factors obtained by both methods are presented in
ysis methods were applied to a 2-D, ¥111 pixel region that Fig. 1(A)-(C) and compared with simulated curves. Both, the
encompassed a short axis slice of the myocardium. A 3-D anighages and the curves obtained using the PLS-FADS method

ysis in which a series of 179 (six slices, %111 pixels) images show very strong agreement with the simulated objects.

were analyzed as a 3-D data set was also performed. e . .
. The results of the more realistic simulation are presented in
Patient data from a plan&’™Tc-MAG; renal study were b

. . Flﬂ] 2. The first row of images presents the factor coefficient
also analyzed. The data were acquired using an eCam syste . . .
Images used to simulate teboroxime uptake in the heart. The

(Siemens, Hoffman Estates, IL). The patient rested in a SuF”snéacond row of images corresponds to factor coefficient images
position as data were acquired by the detector in axX228 9 P g

pixel matrix. The 300 dynamic images were acquired every tained using the nonunique LS-FADS method. Nonunique-
s. FADS was applied to an 18 20 pixel region that encom- ness artifacts similar to those shown in previous computer sim-

passed the right kidney. Only small regions of the image We%ations are clearly visible. For in_stance_z, in the imag(_e of the LV,
investigated since incorporation of the larger regions would rEoMe of the RV can be seen, and in the image of the tissue the LV
quire increasing the number of factors to adequately repres@rﬁleafly y|5|ble. Application of the penalized objective reduces
the data, which would decrease the accuracy of the obtained f4&S€ artifacts and creates much better agreement between the
tors that we are interested in. factors obtamed'through.the FADS methods and the true factors,

ROI measurements were performed in both experimeng can be seen in the third row of Fig. 2(a)—(c).
studies. In the 2-D canine cardiac study, the ROIs spannedrhe value of the error measukeis plotted versus the strength
four pixels. They were automatically determined using FADBarameteb in Fig. 3(a). For the low values df(less than 16)
results that identified pixels with the highest values of facteeconstructions yield larger errors (high valuesidf because
coefficients (matrixC) that corresponded to the LV, RV, andthe nonunigueness correction has little effect on the final results
tissue. Such semi-automatic selection of ROIs decreases dhce the value df is low. D slowly decreased when FADS was
amount of errors caused by overlapping of neighboring factoegplied witht ~ 5 x10%. Further increases dfto ~5 x10°
It is also user independent. For the 3-D cardiac and renghke D rapidly increase because the domination of the term
patient study the ROIs spanned ten pixels, and the method for. in the objective function. High forces the dot product be-
determining the locations of the ROIs was the same as in thgeen the images of the different factor coefficients to be close
2-D cardiac study. to zero. The null value of the dot product term in the higie-

The change of contrast in the image of the factor coefficienigts is achieved by creating sharp edges between components,
between region one in the image and region two in the imagg  the pixels that normally belong to two neighboring compo-
was measured using the following definition: nents, due to the partial volume effect, are forced to be in one or

L C1)-C@2) the other of the neighb_oring structures.. The rapi_d degradation

= W (7) of the results, seen in Fig. 3 as a sharp increade, a$ created
by further increases df, which force a negative value on the

whereC(1) andC(2) are average values of three pixels from duni- Negative values of..,; can be achieved when values of
given region in the factor coefficient imag@ for regions one the pixels in one of the images of the factor coefficients reaches
and two, respectively. slightly negative values. As a result, the nonnegativity term is
not increased significantly, and at the same time the dot product
of this image with other nonnegative components causes a neg-
ative contribution tof uu;.

The conjugate gradient algorithm was very robust. Uncon-|n ig. 3(a), for some values dfthe standard deviation of
strained degrees of freedom due to scaling did not hinder cqgg caiculated is high and the distribution is asymmetric. This

vergence of the algorithm. Al r_esults are presented n 'Fhe fOrrﬁﬁding isillustrated in Fig. 3(b). In the histogram, it can be seen
of images that correspond to images of factor coefficients aﬂga the final value of> for different noise realizations for one

curves that correspond to factors. Since the results were resc@gl e ofb is either high or low. This makes the distribution of

after the reconstruction, as described in Section II-B, all imag%s igh and asymmetric. Fig. 3(c) presents a comparison of the

are in the range from zero to one, so the same gray scale is uﬁ%) relationship for different noise levels. It shows that with

for all of them. higher noise the best achievédlis higher and the range &f

for which the nonuniqueness correction works, is narrower.
Table | presents the summary of the computer simulation re-
The results of the LS-FADS study are presented in Fig. 4ults. It shows that the use of the nonunigueness penalty greatly

The images of factor coefficients obtained using this methaahproves the value of the measutk In Table I, values of the

are shown in second row of Fig. 1. In each image, all of theenalty parameteb,and f..,i/ f1.s are given for the PLS-FADS

objects can be seen due to the nonuniqueness effects. athod, which derived the best value/ofThe table also shows

Cy =

Ill. RESULTS

A. Results of Computer Simulations



SITEK et al. CORRECTION FOR AMBIGUOUS SOLUTIONS IN FACTOR ANALYSIS 221

(a) TABLE |
4 COMPARISON OF THEMINIMUM VALUES OF THE MEASURE D WITH
CORRESPONDINGVALUE OF b OBTAINED BY THE LS- AND PLS-FADS
METHODS FOR THECOMPUTER SIMULATIONS

Error

Noise levels

0% | 15% | 25% | 35%

LS-FADS D | .4413 | 4708 | .4979 | .5155

102 108 10* 10° 108

b PLS-FADS | D | .0019 | .0312 | .0476 | .0680

b 2E3 | 1E5 | 2E5 | 3E5

by
} Lons |\ 10% | 14% | 10% | 7%

frs

Frequency

10 - ] the PLS-FADS. The value afY; also improved from 0.65 for
the LS-FADS method to 0.86 for the PLS-FADS method. In
the image of tissue coefficientgi¥s"* changed from 0.84 to
1.00. Fig. 4(A)—(C) show factors obtained using the LS- and
PLS-FADS methods and the corresponding TACs obtained by
0 0.1 0.2 0.3 0.4 ROI measurements. It can be seen that the PLS-FADS factors
Error agree better with the ROI curves than the factors obtained by
the LS-FADS method. Measurés calculated between the ROI
curve and the factor analysis obtained curve, were 0.2874 and
0.1187 for the LS-FADS method and the PLS-FADS method,
respectively. We would like to state that the comparison is made
to ROI curves which may be biased for the reasons already
discussed in the Introduction. However, ROl measurements are
widely used for the extraction of the TACs.

The analysis of the 3-D data (Fig. 5) yields findings similar
to those of the 2-D analysis. It is noteworthy that the sixth slice
in the 3-D data set is the same slice studied in the 2-D analysis,
o 108 100 for which the results are presented in Fig. 4. For the 6th slice
b in the 3-D data set, FADS with the correction for nonunique-
ness gave results that agree better with the ROl measurements

Fig. 3. The Error,D, of the reconstruction of the RV and LV blood curve ; i i _
versus the value of the penalty paramétégraph (a) and (c)]. The error barss'[han FADS without the correction (Flg' SD(_ 0.1953 for the

in (a) correspond to values of the standard deviation estimated using 100 ndisFADS andD = 0.0736 for the PLS-FADS). This is partic-
realizations. In (c), four curves are presented which correspond to four differerfarly apparent in the tissue curves [Fig. 5(C)]. Also, contrast

levels of simulated normal noise with variances equal to 0%, 15%, 25%, ; - ;
35%. The histogram in (b) presents the values of the By b — 2 x 10° Pthe images of the factor coefficients of the LV and the tissue

at a noise level of 15%, for which the distribution was highly asymmetric [s€dbtained by the PLS-FADS method is improved over the results
@] of the LS-FADS method [Fig. 5(A)—(C)]. For the 3-D LV coeffi-
cientimage¢LY . changed from 0.63 for the LS-FADS to 0.89
that the ratio offuni/ fLs remains at approximately the samédor PLS-FADS method. Also, the value 8§, was better with
level, 10%, even though the noise levels change considerablghe PLS-FADS (1.00) method than with the LS-FADS method

. ) (0.87). In the image of tissue coefficien&iés'e changed from
B. Results of Experimental Studies 0.98 to 1.00.

0.6 -

0.4 -

Error

0.2 -

0

102 108

The results of the 2-D cardiac canine study are summarizedrhe LS-FADS and PLS-FADS methods were also applied to
in Fig. 4. The images in Fig. 4 represent factor coefficients fer patient renal study. Results of the LS-FADS and PLS-FADS
three different factors corresponding physiologically to the R¥nalysis, which were applied to the right kidney, are presented in
LV, and the myocardial tissue. The first row displays the rd=ig. 6. The top two rows of images present the factor coefficient
sults obtained using the LS-FADS method. The second row distages for the kidney cortex, background, and pelvis/ureter
plays the PLS-FADS results. The contrast is improved in tlttemponents obtained using nonunique LS-FADS first row) and
PLS-FADS images of the LV and tissue (contrast between pixét S-FADS (second row). In the LS-FADS results, the images
corresponding to the LV and tissue) in comparison to the irhave similar structures and overlap considerably. This results
ages obtained using the LS-FADS method. For the LV codft factors that do not agree with the ROI curves. These findings
ficient image,él¥_  was 0.79 for the LS-FADS and 0.95 forare presented in the plots in Fig. 6(A)—(C). In the LS-FADS

Crissue
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Fig. 4. Results of LS-FADS and PLS-FADS analysis 8f & Tc-teboroxime Timelrecsndsl

canine cardiac study. The top row corresponds to images of factor coefficients

for (@) RV blood, (b) LV blood, and (c) tissue components obtained b¥ .

. . ig. 5. Results of 3-D LS-FADS and PLS-FADS analysis of a
LS-FADS. The Iower_ row of images was obtame_d by PLS-FADS._The Sl T teboroxime canine cardiac study. The top three rows correspond
gray scale representing values from zero to one is used for each image. Plots

. 10 iMages of factor coefficients for 6 consecutive slices for (a) RV blood, (b)
((:f;)rﬁr()laazi‘sgr??o(ggr\%gsoebqgit:: dfg;:tgg ?T?éi?jfin?gnttlf FADS methods W'fﬁ/ blood, and (c) tissue components obtained by LS-FADS. The same gray

scale representing values from zero to one is used for each image. The lower
three rows of images was obtained by 3-D PLS-FADS. Plots (A), (B), and (C)

. present the factors obtained by the 3-D FADS methods with comparison to
results (region from 1000 s to 1500 s), the curves appear toddRres obtained by ROI measurements.

much noisier. This is because the factor coefficient images are
similar, which allows the factors texchangej.e., the factor other factors. This is only possible because the images of the
increase in one curve is compensated for by decreases in fdetor coefficients are similar and high noise levels are present.
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Fig.6. Theresults of LS FADS methods of*a* Tc-MAG; patient renal study. The top row corresponds to images of factor coefficients obtained by the LS-FADS
for (a) kidney cortex, (b) background, and (c) pelvis and ureter components. Second row of images is the same but obtained by the PLS-FADS. The same gray
scale representing values from zero to one is used for each image. Plots (A), (B), and (C) present the factors obtained by the PLS-FADS methoassaeith comp

to curves obtained by ROl measurements.

When the PLS-FADS method is applied the obtained curvB®I curves and the FADS obtained curves decreased fPom
agree much better with the ROI measurements. Dhealcu- 0.2554 for the LS-FADS td) = 0.1128 for the PLS-FADS
lated using the background and the cortex factors between thethod. The agreement of background curves is approximate
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The most problematic issue in the method presented is the se-
lection of the appropriate value of the nonuniqueness penalty pa-
rametem. Fig. 3(a) shows that for the analyzed computer simu-
lation of teboroxime uptaké,needs to be larger than a threshold
value in order for the correction to work. The improvement in

(@

accuracy of the curve extraction by PLS-FADS is very rapid. It
can be seen in the histogram in Fig. 3 that with the same noise

level—but different noise realizations, nonuniqueness correc-
tion either works (low values oD), or does not work (high
values of D), with no values lying in-between. The value of
b must also be less than an upper threshold, above which ex-
- p tracted factors and factor coefficients are not accurate because
(b)

the nonuniqueness term dominates in the objective function and
{Ehe results of the factor model no longer match the analyzed
data. Thusp has to be in the range between the lower and

upper thresholds. As seen in Fig. 3(c), the upper threshold re-

though because the FADS-obtained background image also Joigined the same and the lower threshold changed as noise levels
tains some of the liver component, which can be seen in the &\anged. However, the minima 6f were always such that the

efficient image of the background as increased activity in tyglue of fLs+/neg Was approximately ten times larger than,,

: ; S can be seen in Table I. This fact was used to sélfxtthe
upper ”ght corner .Of F.'g' 6(b), Seco’?d row. As aresult, the COkaerimental studies. Although the mis-selectiorb @ a po-
responding factor is biased by the liver component. The pelyis

curves, although similar in shape, differ considerably due to t gntial problem it is encouraging that (as shown in the computer

fmulation), the range of “goodivalues is wide and, dependin
factthatin the ROl results there is complete overlap of the cort X the noig;a variesgfrom%ne to two orders of ma{gnif)ude Agllso

and Pe""?" whergas in the FADS results, these two diﬁeregﬁcouraging is the fact that whénwas selected in the same
physiological regions are separated. manner as in the teboroxime study it proved equally useful for
the completely different renal study (Fig. 6).

This strategy used for selecting as described in

The figures presenting the results from computer simulatiofection 11-B proved to be successful. It worked not only
(Figs. 1 and 2) clearly show that the factor coefficientimages dre " Tc-teboroxime cardiac imaging and renal imaging
mixed when the FADS method with nonnegativity constraints & shown in the paper, but also for other dynamic studies
employed. For example, in the FADS obtained images of eagbt shown here. We found that it worked well for a patient
component, the other components can be seen. Most of the é8mTc-teboroxime cardiac study with four components (the
responding factors are completely inaccurate and lie far from the Rv, tissue, and liver), a two-component positron emission
simulated curves—this is especially apparent in Fig. 1(A)~(Gbmography liver FDG study, and a dynamic cardiac MRI
The example in Fig. 1 shows the possible severity of nonuniqugudy.
ness artifacts. This example was specifically chosen to show/hen using PLS-FADS, the dot product between the factor
how inaccurate FADS with nonnegativity constraints can be. Q@efficient images is minimized without violating the nonnega-
the other hand, it is possible to construct a different comput{f'\;ity constraints, or violating (2), because the constgint (5)
simulation in which FADS with nonnegativity constraints gives; small. This minimization prevents mixing and creates per-
a unique answer. For example, if the factors used are the same,as agreement between the PLS-FADS results and the simu-

the ones presented in Fig. 7(a), FADS with nonnegativity COlsted data [fourth row of Fig. 1 and Fig. 1(A)=(C)]. These ef-

sfcraints will give a unique answer. This is because it is impOPe'cts can also be seen in the experimental data. In the image
s!ble to subtract any c_)f _those factors from any others WIthOHI the left ventricle in Fig. 4(b) first row, some of the compo-
violating the nqnpeggﬂwty of the factors. This, and the fact th%ents of the right ventricle and the tissue can be seen. Additional
the factor coefficientimages also cannot be subtracted from onoern onents in this image are removed when PLS-FADS is used
another without violating nonnegativity, guarantees the uniquﬁz—. P 9

ness of the FADS results for this example (for more detail s ed: 4(b) second row].

[7]). Conversely, it was shown in the computer simulations that The same effect can be seen in the images of the tissue compo-

nonuniqueness artifacts were severe when they were applied51tS: The tissue image [Fig. 4(c) firstrow] is biased by the LV
the set of factors presented in Fig. 7(b). It can be concluded tR&¢ the RV. When PLS-FADS is used the LV and RV contam-
the nonuniqueness effects have a significant impact on the fation is removed from the image of tissue factor coefficients,
sults of FADS, and the severity of the nonuniqueness strondl&'ﬂ'Ch increases the contrast in this image [Fig. 4(c) second row]
depends on the study under consideration. in comparison to the tissue image obtained using the LS-FADS
The algorithm presented here introduces unconstrained &ethod. Significantly better agreement is achieved between the
grees of freedom due to arbitrary scaling of the factors and factésults of factor analysis and the ROl measurements when the
coefficients. However, this does not affect convergence of gieenalized objective function is used. This is especially true for
dient-based optimization because directional derivatives of ttie LV [Fig. 4(B)] and for the RV [Fig. 4(A)] curves.
objective function in directions associated with the scaling am- Different nonuniqueness effects can be seen in the results of
biguity are zero. FADS for the 3-D data set than can be seen in the FADS re-

Fig. 7. (a) Factors for which FADS with nonnegativity constraints will give
unique solution and (b) factors used in the computer simulations in this pap

IV. DISCUSSION
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sults for the 2-D data set. The tissue curve obtained using theercome this limitation was proposed. The strategy is based on
LS-FADS method is much different than the curve obtained lpmputer simulations and was successfully applied to an exper-
the ROI measurements [Fig. 5(C)]. This disagreement was conental canin@*™Tc-teboroxime cardiac study and to a patient
rected by applying the nonuniqueness correction (PLS-FADSY™Tc-MAG 3 renal study.
A disagreement in the tissue curves obtained by the LS-FADS
arises because the LV component completely underlies the my-
ocardial tissue due to the existence of vasculature in the heart _
muscle. Therefore, the amount of vasculature contained in thelhe authors would like to thank Dr. A. Celler of Vancouver
tissue curve in the results of the nonunique FADS acquisitid#Pspital for providing us with the renal data used in this study.
is ambiguous. Due to this ambiguity in the 2-D data set thhey would also like to thank S. Webb for editing this manu-
tissue curve obtained by LS-FADS is close to the ROI cungeript.
[Fig. 4(C)], and for the 3-D data set it is not [Fig. 5(C)] (see also
[7_]). Obviou;ly, the tissue ROI curves represent the tissue curve REEERENCES
with an addmon of a vasculature component. T,he PLS-FADS 1] D. C. Barber, “The use of principal components in the quantitative anal-
removes tr_\e disagreement because the NONUNIQUENESS COITEC- ysis of gamma dynamic studie®hys. Med. Biolvol. 25, pp. 283-292,
tion minimizes the overlap between the factor coefficients, so  1980. _ _
that the myocardial tissue and the LV vasculature of the heart?l R:DiPaola, J.P. Bazin, F. Aubury, A. Aurengo, F. Cavailloles, Y. Herry,
. . and E. Kahn, “Handling of dynamic sequences in nuclear medicine,
muscle are treated as one component, since spaua!ly they 0C- |EEE Trans. Nucl. Sgivol. NS-43, pp. 13101321, 1982.
cupy the the same space. As aresult, the PLS-FADS tissue curvi§] V. J. Cunningham and T. Jones, “Spectral analysis of dynamic PET
e cimi ; ; studies,”J. Cereb. Blood Flow Metajpvol. 13, pp. 15-23, 1993.
is similar to th.e one obtained by R.OI measurements [Figs. 4(0)[?4 F. O’Sullivan, “Imaging radiotracer model parameters in PET: A mixture
and 5(C)]. This can also be seen in the results of the computer * analysis approachlEEE Trans. Med. Imagvol. 12, pp. 399-412, Sept.
simulations (Fig. 2). 1993. _ _ _ _
Some new nonuniqueness artifacts can be seen in the rendg! R- K. Choudhury, “Mixture analysis of multichannelimage data,” Ph.D.
. . dissertation, Univ. Washington, Seattle, 1998.
study Whgre the com.ponents are gxchanged, t_hgreby increasirg] A.s. Houston, “The effect of apex-finding errors on factor images ob-
the noise in the acquired factors [Fig. 6(C)]. This is because im-  tained from factor analysis and oblique transformatidptiys. Med.
i o i cimilarify ic ro. Biol., vol. 29, pp. 1109-1116, 1984.
ages of the factor Coeﬁlc.lents ar.e SlmllaI:. Thls Slmlla.lmy IS re [7] A. Sitek, E. V. R. Di Bella, and G. T. Gullberg, “Factor analysis with
moved when the penalty is used in the objective functionand the ~ 3 priori knowledge—Application in dynamic cardiac SPECPhys.
exchange effect is removed in the results of the PLS-FADS. In _ Med. Biol, vol. 45, pp. 2619-2638, 2000. _
the renal study, there is a partial overlap between the pelvis com[®] !- Buvat, H. Benali, F. Frouin, J. P. Bazin, and R. Di Paola, “Target apex-
seeking in factor analysis on medical sequendeky’s. Med. Biol.vol.
ponent and the cortex. The PLS-FADS method separates these 3g pp. 123-128, 1993.
regions [Fig. 6(b) and (c)]. In the factor curve that corresponds[9] K. S. Nirjan and D. C. Barber, “Factor analysis of dynamic function
to the pelvis a delay can be seen between the maximum activity studies using priori physiological information,Phys. Med. Biol.vol.
. ’ ) L ) o 31, pp. 1107-1117, 1986.
in the Cortfax_ and the maximum aC“V'tY n the_p_e|V|_3- Activity [10] , “The importance of constraints in factor analysis of dynamic
in the pelvis is zero during the first 2 min after injection. These studies,” ininformation Processing in Medical ImaginG. N. de Graaf
_ and M. A. Viergever, Eds. New York: Plenum, 1988, pp. 521-529.
effects cannot l.)e seen on ROI curves because of the overlap l??1] M. Sédmal, M. Karny, H. Surova, E. Nikova, and Z. Dienstbier, “Ro-
tween the pelvis and the cortex. Therefore, the ROI curve that ~ tation to simple structure in factor analysis of dynamic radionuclide

corresponds to the pelvis is nonzero from the beginning. studies,”Phys. Med. Biol.vol. 32, pp. 371-382, 1989.
[12] A. S. Houston, “The use of set theory and cluster analysis to investi-
gate the constraint problem in factor analysis in dynamic structures
V. SUMMARY (FADS),” in Information Processing in Medical ImagingS. L.
. . . Bacharach, Ed. Dordrecht, The Netherlands: Nijhoff, 1986, pp.
In this paper, we showed the importance of nonuniqueness 177_19o.
correction in factor analysis. Based on the LS approach, we dgt3] M. Nakamura, Y. Suzuki, and S. Kobayashi, “A method for recovering

veloped a simple and straightforward method for Correcting the  physiological components from dynamic radionuclide images using the
. f f FADS. Th . b d maximum entropy principle: A numerical investigationEE Trans.
nonuniqueness effects o - The correction was based On  gjomed. Eng.vol. 36, pp. 906-916, Sept. 1989.

minimizing the overlaps between the images of different factof14] A. Sitek, E. V. R. Di Bella, and G. T. Gullberg, “Factor analysis in dy-
coefficient images. The overlap that occurred was one of the ~ namic strucwres in dynamic SPECT using maximum entrofi§ze
. fect d r It of its minimization. oth Trans. Nucl. Scj.vol. 46, pp. 2227-2232, Dec. 1999.
nonun!queness efrects, ana, QS aresuftoris aton, o ?.[5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flanniity
nonuniqueness effects seen in the factor curves were also min- merical Recipesin C Cambridge, U.K.: Cambridge Univ. Press, 1996,
imized. The tradeoff between minimization of the nonunique-__ Pp. 420-425. _ ,
ffect d t with the dat d bv th |H6] B. M. W. Tsui, J. A. Terry, and G. T. Gullberg, “Evaluation of cardiac
ness efrects and agreement wi € data governed by the valu€” one-peam SPECT using observer performance experiments and ROC

of the parameteb is a limitation of the method. A strategy to analysis,"Investigat.. Radiol.vol. 28, pp. 1101-1128, 1993.

ACKNOWLEDGMENT




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


